The Human Body

This site is all about human body. From basics to higher levels. It is equally useful to children as well as professionals.

Google search

It is a system that conducts stimuli from sensory receptors to the brain and spinal cord and that conducts impulses back to other parts of the body. As with other higher vertebrates, the human nervous system has two main parts: the central nervous system (the brain and spinal cord) and the peripheral nervous system (the nerves that carry impulses to and from the central nervous system). In humans the brain is especially large and well developed.


PRENATAL AND POSTNATAL DEVELOPMENT OF HUMAN NERVOUS SYSTEM

Almost all nerve cells, or neurons, are generated during prenatal life, and in most cases they are not replaced by new neurons thereafter. Morphologically, the nervous system first appears about 18 days after conception, with the genesis of a neural plate. Functionally, it appears with the first sign of a reflex activity during the second prenatal month, when stimulation by touch of the upper lip evokes a withdrawal response of the head. Many reflexes of the head, trunk, and extremities can be elicited in the third month.

During its development the nervous system undergoes remarkable changes to attain its complex organization. In order to produce the estimated 1 trillion neurons present in the mature brain, an average of 2.5 million neurons must be generated per minute during the entire prenatal life. This includes the formation of neuronal circuits comprising 100 trillion synapses, as each potential neuron is ultimately connected with either a selected set of other neurons or specific targets such as sensory endings. Moreover, synaptic connections with other neurons are made at precise locations on the cell membranes of target neurons. The totality of these events is not thought to be the exclusive product of the genetic code, for there are simply not enough genes to account for such complexity. Rather, the differentiation and subsequent development of embryonic cells into mature neurons and glial cells are achieved by two sets of influences: (1) specific subsets of genes and (2) environmental stimuli from within and outside the embryo. Genetic influences are critical to the development of the nervous system in ordered and temporally timed sequences. Cell differentiation, for example, depends on a series of signals that regulate transcription, the process in which deoxyribonucleic acid (DNA) molecules give rise to ribonucleic acid (RNA) molecules, which in turn express the genetic messages that control cellular activity. Environmental influences derived from the embryo itself include cellular signals that consist of diffusible molecular factors (see below Neuronal development). External environmental factors include nutrition, sensory experience, social interaction, and even learning. All of these are essential for the proper differentiation of individual neurons and for fine-tuning the details of synaptic connections. Thus, the nervous system requires continuous stimulation over an entire lifetime in order to sustain functional activity.

Neuronal development
In the second week of prenatal life, the rapidly growing blastocyst (the bundle of cells into which a fertilized ovum divides) flattens into what is called the embryonic disk. The embryonic disk soon acquires three layers: the ectoderm (outer layer), mesoderm (middle layer), and endoderm (inner layer). Within the mesoderm grows the notochord, an axial rod that serves as a temporary backbone. Both the mesoderm and notochord release a chemical that instructs and induces adjacent undifferentiated ectoderm cells to thicken along what will become the dorsal midline of the body, forming the neural plate. The neural plate is composed of neural precursor cells, known as neuroepithelial cells, which develop into the neural tube (see below Morphological development). Neuroepithelial cells then commence to divide, diversify, and give rise to immature neurons and neuroglia, which in turn migrate from the neural tube to their final location. Each neuron forms dendrites and an axon; axons elongate and form branches, the terminals of which form synaptic connections with a select set of target neurons or muscle fibres.

The remarkable events of this early development involve an orderly migration of billions of neurons, the growth of their axons (many of which extend widely throughout the brain), and the formation of thousands of synapses between individual axons and their target neurons. The migration and growth of neurons are dependent, at least in part, on chemical and physical influences. The growing tips of axons (called growth cones) apparently recognize and respond to various molecular signals, which guide axons and nerve branches to their appropriate targets and eliminate those that try to synapse with inappropriate targets. Once a synaptic connection has been established, a target cell releases a trophic factor (e.g., nerve growth factor) that is essential for the survival of the neuron synapsing with it. Physical guidance cues are involved in contact guidance, or the migration of immature neurons along a scaffold of glial fibres.

In some regions of the developing nervous system, synaptic contacts are not initially precise or stable and are followed later by an ordered reorganization, including the elimination of many cells and synapses. The instability of some synaptic connections persists until a so-called critical period is reached, prior to which environmental influences have a significant role in the proper differentiation of neurons and in fine-tuning many synaptic connections. Following the critical period, synaptic connections become stable and are unlikely to be altered by environmental influences. This suggests that certain skills and sensory activities can be influenced during development (including postnatal life), and for some intellectual skills this adaptability presumably persists into adulthood and late life.

Morphological development
By 18 days after fertilization, the ectoderm of the embryonic disk thickens along what will become the dorsal midline of the body, forming the neural plate and, slightly later, the primordial eye, ear, and nose. The neural plate elongates, and its lateral edges rise and unite in the midline to form the neural tube, which will develop into the central nervous system. The neural tube detaches from the skin ectoderm and sinks beneath the surface. At this stage, groupings of ectodermal cells, called neural crests, develop as a column on each side of the neural tube. The cephalic (head) portion of the neural tube differentiates into the prosencephalon (forebrain), mesencephalon (midbrain), and rhombencephalon (hindbrain), and the caudal portion becomes the spinal cord. The neural crests develop into most of the elements (e.g., ganglia and nerves) of the peripheral nervous system. This stage is reached at the end of the first embryonic month.

The cells of the central nervous system originate from the ventricular zone of the neural tube—that is, the layer of neuroepithelial cells lining the central cavity of the tube. These cells differentiate and proliferate into neuroblasts, which are the precursors of neurons, and glioblasts, from which neuroglia develop. With a few exceptions, the neuroblasts, glioblasts, and their derived cells do not divide and multiply once they have migrated from the ventricular zone into the gray and white matter of the nervous system. Most neurons are generated before birth, although not all are fully differentiated. (One exception is the neurons of the olfactory nerve, which are generated continuously throughout life.) This effectively implies that an individual is born with a full complement of nerve cells.

By mid-fetal life the slender primordial brain of the neural-tube stage differentiates into a globular-shaped brain. Although fully mature size and shape are not obtained until puberty, the main outlines of the brain are recognizable by the end of the third fetal month. This early development is the product of several factors: the formation of three flexures (cephalic, pontine, and cervical); the differential enlargement of various regions, especially the cerebrum and the cerebellum; the massive growth of the cerebral hemispheres over the sides of the midbrain and of the cerebellum at the hindbrain; and the formations of convolutions (sulci and gyri) in the cerebral cortex and folia of the cerebellar cortex. The central and calcarine sulci are discernible by the fifth fetal month, and all major gyri and sulci are normally present by the seventh month. Many minor sulci and gyri appear after birth.

Postnatal changes

The postnatal growth of the human brain is rapid and massive, especially during the first two years. By two years after birth, the size of the brain and the proportion of its parts are basically those of an adult. The typical brain of a full-term infant weighs 350 grams (12 ounces) at birth, 1,000 grams at the end of the first year, about 1,300 grams at puberty, and about 1,500 grams at adulthood. This increase is attributable mainly to the growth of preexisting neurons, new glial cells, and the myelination of axons. The trebling of weight during the first year (a growth rate unique to humans) may be an adaptation that is essential to the survival of humans as a species with a large brain. Birth occurs at a developmental stage when the infant is not so helpless as to be unable to survive, yet is small enough to be delivered out of the maternal pelvis. If the brain was much larger (enough, say, to support intelligent behaviour), normal delivery would not be possible.

Between the ages of 20 and 75, it is estimated that an average of 50,000 neurons atrophy or die each day. In a healthy person, this loss is roughly equal to 10 percent of the original neuronal complement. By the age of 75, the weight of the brain is reduced from its maximum at maturity by about one-tenth, the flow of blood through the brain by almost one-fifth, and the number of functional taste buds by about two-thirds. A loss of neurons does not necessarily imply a comparable loss of function; however, some loss may be compensated for by the formation from viable neurons of new branches of nerve fibres and by the formation of new synapses.

0 comments:

Post a Comment